Fractal-driven distortion of resting state functional networks in fMRI: a simulation study
نویسندگان
چکیده
Fractals are self-similar and scale-invariant patterns found ubiquitously in nature. A lot of evidences implying fractal properties such as 1/f power spectrums have been also observed in resting state fMRI time series. While the traditional model of fractal behavior in resting state fMRI has been a fractional Gaussian noise, it is limited to describe the physical implication of fractal behavior on functional connectivity of the brain. To answer this problem, we have proposed the fractal-based model of resting state hemodynamic response function (rs-HRF) whose properties can be summarized by a fractal exponent (You et al. 2012 BMC Neurosci.). Here we show, through a simulation studies, that the fractal behavior of cerebral hemodynamics may cause significant distortion of network properties between neuronal activities and BOLD signals. We simulated neuronal population activities based on the stochastic neural field model from the Macaque brain network, and then obtained their corresponding BOLD signals by convolving them with the rs-HRF filter. The precision of centrality estimated in each node was deteriorated overall in three networks based on transfer entropy, mutual information, and Pearson correlation; particularly the distortion of transfer entropy was more sensitive to the standard deviation of fractal exponents (Figure 1). A node with high centrality was resilient to desynchronized fractal dynamics over all frequencies while a node with small centrality exhibited huge distortion of both wavelet correlation and centrality over low frequencies (Figure 2). This theoretical expectation indicates that the difference of fractal exponents between brain regions leads to discrepancy of statistical network properties, especially at nodes with small centrality, between neuronal activities and BOLD signals, and that the traditional definitions of resting state functional connectivity may not effectively reflect the dynamics of spontaneous neuronal activities. As an alternative, the nonfractal connectivity, which is defined as the correlation of nonfractal components of resting state BOLD signals, can be considered to overcome the fractal artifact (You et al. 2012 IJCNN). In conclusion, our simulation studies may give us insight into the influence of fractal behavior on complex networks of the brain.
منابع مشابه
Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملBrain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...
متن کاملResting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging
Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملطبقهبندی بیماری پارکینسون بر مبنای شاخصهای درون-ناحیهای و بین-ناحیهای شبکه حرکتی مغز با استفاده از دادگان fMRI حالت استراحت
Parkinson’s disease (PD) is a progressive neurological disorder characterized by tremor, rigidity, and slowness of movement. Recent studies on investigation of the brain function show that there are spontaneous fluctuations between regions at rest as resting state network affected in various disorders. In this paper, we used amplitude of low frequency fluctuation (ALFF) for the study of intra-r...
متن کامل